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1 The Meta-Theory of Generalised Algebraic Theories

There are several ways of expressing the generalised algebraic theory of generalised algebraic the-
ories. This document introduces one such which we call MetaGAT in view of the fact that it can
said to be a meta theory of generalised algebraic theories. We describe and discuss the relationship
of the theory MetaGAT to the theory of contextual categories.

2 Background

Contextual Categories provide algebraic representations of Generalised Algebraic Theories in the
sense that to every Generalised Algebraic Theory U there is a contextual category C(U) such that
algebras of the theory U are exactly structure preserving functors (contextual functors) from C(U)
into the contextual category Fam of sets, families of sets and so on. We summarise this by saying
that Contextual Categories provide the algebraic semantics of Generalised Algebraic Theories.

However, contextual categories contain structure that is in some sense redundant; this is in the
same way that a Lawvere algebraic theory contains redundant structure compared to the otherwise
equivalent notion, from universal algebra, of a clone. In both cases the redundancy is introduced in
order to achieve a definition in which the algebraic structures are enrichments (informally speaking)
of categories. Remove the redundant structure and there is no longer a category having surface
visibility in the definitions.

The redundancy in the structure of a contextual category is exploited by Vladimir Voevodsky in
his ‘Subsystems And Regular quotients of C-systems’ paper to give a Generalised Algebraic Theory
of Contextual Categories. The significant point is that Voevodsky does this without introducing
additional types whereas I had noted in my thesis that contextual categories could be described
by a generalised algebraic theory with the introduction of additional equationally defined types
to represent identity of morphisms. Voevodsky instead introduces an ‘s’ operator on morphisms
which in fact maps a morphism to a normal form representing that morphism as a section. By
a section of type B, SecC(B), in a contextual category C, I mean a morphism f : A → B in C,
where A ⊳ B and such that f ◦ p(A) = idA

1.
Compared to the theory of contextual categories, the theory MetaGAT does not introduce

redundant structure; it axiomatises the types and the terms of the theory directly and these
correspond to the objects and the sections of a corresponding contextual category. The theory of
contextual categories, on the other hand, axiomatises n-tuples of terms for any n; it is these that
are represented by the morphisms of a contextual category.

3 Conclusion

(i) There is an isomorphism between the theory of contextual categories and the theoryMetaGAT

in the category of existentially and identity enriched generalised algebraic theories.

(ii) There is no such isomorphism in the category of generalised algebraic theories.

(iii) The category of MetaGAT algebras and the category of contextual categories are isomorphic.

1In my thesis the notation ArrC(B) was used for what here we refer to as the sections and denote SecC(B)
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(iii) follows from (i) only because the contextual category Fam of sets, families of sets has exis-
tential quantification and identity types.

MetaGAT algebras may have interpretations (and, therefore, applications) where Contextual Cat-
egories do not.

4 The MetaGAT Theory

Sorts

The theory MetaGat has two families of sort symbols representing, respectively, types and terms
of a GAT.

Types of a GAT are represented by a family of sort symbols ∇i)i≥1
introduced by rules as follows:

∇1 is a type

x1 ∈ ∇1 ⊢ ∇2(x1) is a type

...

x1 ∈ ∇1, ...xi ∈ ∇i(x1, ...xi−1) ⊢ ∇i+1(x1, ..xi) is a type

We can drop the subscripts from ∇ and omit the inessential variables so that we express as:

x1 ∈ ∇, ..xn ∈ ∇(xn−1) ⊢ ∇(xn) is a type (1)

Terms of a GAT are represented in MetaGat by a family of sort symbols τi)i≥1
. When x is a

type at level i, τi(x) represents the terms of type x. As before, the subscripts and the inessential
variables can be omitted and so, formally, each operator τ is introduced by:

x1 ∈ ∇, ...xn ∈ ∇(xn−1), x ∈ ∇(xn) ⊢ τ(x) is a type (2)

We see, therefore, that a MetaGAT algebra has a tree of types and for each type a set of terms. If,
in some context, f is a term of type τ(x) then we picture it in the tree of types as an arrow leading
to x from its predecessor node which, in some cases, may be the root of the tree. For example, in
the context given in equation (2), if f is a term of type τ(x) then this is pictured so:

◦

x1

x2
xn x

f
Operators

There are three families of operators in MetaGAT . In short they represent substitution denoted
by ∗, weakening denoted by ⊗ and tautology (x in the context of x) which we call the diagonal
and denote δ. We now describe the types of these operators in detail and a set of axioms that then
complete the definition of MetaGAT .
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Substitution - The ∗ operators

A family of operators is introduced for substitution of terms into terms and types. Without am-
biguity we can dispense with subscripts and use the symbol ∗ throughout so that f∗t is denotes
the substitution of term f into some term or type expression. To be more precise, if f is a term of
type x, for some x, and if y is a type within a context which includes x, and if g is a term of type
y, then f∗g is a term of type f∗y.

Formally, this is expressed by a collection of rules. In the simplest cases we have:

x ∈ ∇, f ∈ τ(x), y ∈ ∇(x) ⊢ f∗y ∈ ∇ (3)

and
x ∈ ∇, f ∈ τ(x), y ∈ ∇(x), g ∈ τ(y) ⊢ f∗g ∈ τ(f∗y) (4)

Rules (3) and (4) can be pictured like this:

◦

x
f y

g

f∗yf∗g

More generally the rules for substitution are for n ≥ 0 and m ≥ 0:

x1 ∈ ∇, ...xn ∈ ∇(xn−1), x ∈ ∇(xn), f ∈ τ(x), y1 ∈ ∇(x), ...ym ∈ ∇(ym−1), y ∈ ∇(ym)

⊢ f∗y ∈ ∇(f∗ym) (5)

and

x1 ∈ ∇, ...xn ∈ ∇(xn−1), x ∈ ∇(xn), f ∈ τ(x), y1 ∈ ∇(x), ...ym ∈ ∇(ym−1), y ∈ ∇(ym),

g ∈ τ(y) ⊢ f∗g ∈ τ(f∗y) (6)

In rule 6 all the context of rule 5 is given and then some (variable g is introduced). This is going to
be a familiar pattern so we abbreviate by using double parentheses to reference an earlier context
to be included. This enables us to represent rule 6 as follows:

((5)), g ∈ τ(y) ⊢ f∗g ∈ τ(f∗y) (7)

Rules (5) and (6) can be pictured like this:

◦ x1 xn

x
f y1 ym y

g

f∗y1 f∗ym f∗y

f∗g

Substitution is subject to the rule that when both sides are defined (f∗g)∗(f∗z) = f∗(g∗z).
The axioms, stated generally, are that, for n ≥ 0,

x1 ∈ ∇, ...xn ∈ ∇(xn−1), x ∈ ∇xn, f ∈ ∇(x), y1 ∈ ∇(xn), ...ym ∈ ∇(ym−1), y ∈ ∇ym, g ∈ ∇(y),

z1 ∈ ∇(ym), ...zl ∈ ∇(zl−1), z ∈ ∇zl ⊢ (f∗g)∗(f∗z) = f∗(g∗z) (8)

and
((8)), h ∈ τz ⊢ (f∗g)∗(f∗h) = f∗(g∗h) (9)
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The combination of axioms (8) and (9) can be pictured like this:

◦ x1 xn

x

f

y1 ym

yg z1 zl z

h

g∗z1 g∗zl g∗z

g∗h

f∗y1 f∗ym

(f∗g)∗(f∗z1) (f∗g)∗(f∗zl) (f∗g)∗(f∗z)

(f∗g)∗(f∗h)

f∗(g∗z1) f∗(g∗zl) f∗(g∗z)

(f∗(g∗h)

Weakening - The ⊗ operators

Introduction of context into a type or a term is represented by a family of operator symbols. In a
completely formal presentation a second subscript is required but without ambiguity we can work
with a notation with a family ⊗i)i≥0

. In the simplest case:

x ∈ ∇, y ∈ ∇ ⊢ x⊗0 y ∈ ∇(x) (10)

which we can picture like this:

◦

x x⊗0 y

y

and

x ∈ ∇, y ∈ ∇, g ∈ τ ⊢ x⊗0 g ∈ τ(x⊗0 y) (11)

which we can picture like this:

◦

x x⊗0 y

x⊗0 g

yg

The general rules for the introduction of the ⊗i family of operators are as follows. For n ≥ 0 and
m ≥ 0, type weakening is introduced by:

x1 ∈ ∇, ...xn ∈ ∇(xn−1), x ∈ ∇(xn), y1 ∈ ∇(x), ...ym ∈ ∇(ym−1), y ∈ ∇(ym) ⊢ x⊗n y∈∇(x⊗n ym)
(12)

which can be pictured so:

◦ x1 xn

y1 ym y

x x⊗n y1 x⊗n ym x⊗n y

The weakening of a term, in general, is introduced by:

((12)), g ∈ τ(y) ⊢ x⊗n g ∈ τ(x⊗n ym) (13)
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which we picture like this:

◦ x1 xn

y1 ym y

g

x x⊗n y1 x⊗n ym x⊗n y

x⊗n g

In what follows, we will drop all indices to the ⊗ symbol when there is no risk of ambiguity. Note
that ambiguities can arise when the indices are omitted; we discuss these in a later section once
were have completed this presentation of the theory.

Weakening is subject to the following axioms when applied to weakened types, for n ≥ 0, m ≥ 0,:

x1 ∈ ∇, ...xn ∈ ∇(xn−1), x ∈ ∇(xn), y1 ∈ ∇(xn), ...ym ∈ ∇(ym−1), y ∈ ∇(ym), z1 ∈ ∇(ym), ...zl ∈ ∇(zl−1),

z ∈ ∇(zl) ⊢ (x⊗ y)⊗ (x⊗ z) = x⊗ (y ⊗ z) (14)

and the following when applied to weakened terms, for n ≥ 0, m ≥ 0,:

((14)), g ∈ ∇(zl) ⊢ (x⊗ y)⊗ (x⊗ g) = x⊗ (y ⊗ g) (15)

The combination of axioms (14) and (15) can be pictured like this:

◦ x1 xn

y1 ym

z1 zl z
g

y y ⊗ z1 y ⊗ zl y ⊗ z

y ⊗ g

x x⊗ y1 x⊗ ym

x⊗ z1 x⊗ zl x⊗ z

x⊗ g

x⊗ y

(x⊗ y)⊗ (x⊗ z1) (x⊗ y)⊗ (x⊗ zl) (x⊗ y)⊗ (x⊗ z)

(x⊗ y)⊗ (x⊗ g)

x⊗ (y ⊗ z1) x⊗ (y ⊗ zl) x⊗ (y ⊗ z)

x⊗ (y ⊗ g)

Axioms of Substitution and Weakening

Two families of axioms govern behaviour of substitution into weakened types and terms.
Firstly, for n ≥ 0,m ≥ 0,

x1 ∈ ∇, ...xn ∈ ∇(xn−1), x ∈ ∇xn, f ∈ τ(x), y1 ∈ ∇(xn), ...ym ∈ ∇(ym−1), y ∈ ∇ym

⊢ f∗(x⊗ y) = y (16)

and

((16)), g ∈ τ(y) ⊢ f∗(x⊗ g) = g (17)
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The combination of axioms (16) and (17) can be pictured like this:

◦ x1 xn

f∗(x⊗ y1) f∗(x⊗ ym) f∗(x⊗ y)

f∗(x⊗ g)

y1 ym y

g

x

f

x⊗ y1 x⊗ ym x⊗ y

x⊗ g

Secondly, n ≥ 0,m ≥ 0, l ≥ 0:

x1 ∈ ∇, ...xn ∈ ∇(xn−1), x ∈ ∇(xn), f ∈ τ(x), y1 ∈ ∇(x), ...ym ∈ ∇(ym−1), y ∈ ∇(ym)

z1 ∈ ∇(ym), ...zl ∈ ∇(zl−1), z ∈ ∇(zl) ⊢ f∗y ⊗ f∗z = f∗(y ⊗ z) (18)

and

((18)), g ∈ τ(z) ⊢ f∗y ⊗ f∗g = f∗(y ⊗ g) (19)

The combination of axioms (18) and (19) can be pictured like this:

◦ x1 xn

x

f

y1 ym

z1 zl z
g

y y ⊗ z1 y ⊗ zl y ⊗ z

y ⊗ g

f∗y1 f∗ym

f∗z1 f∗zl f∗z

f∗g

f∗y

f∗(y ⊗ z1) f∗(y ⊗ zl) f∗(y ⊗ z)

f∗(y ⊗ g)

f∗y ⊗ f∗z1 f∗y ⊗ f∗zl f∗y ⊗ f∗z

f∗y ⊗ f∗g

In addition there are axioms governing the substitution of weakened terms into weakened terms.
For n ≥ 0,m ≥ 0, l ≥ 0:

x1 ∈ ∇, ...xn ∈ ∇(xn−1), x ∈ ∇(xn), y1 ∈ ∇(xn), ...ym ∈ ∇(ym−1), y ∈ ∇(ym), g ∈ τ(y)

z1 ∈ ∇(y), ...zl ∈ ∇(zl−1), z ∈ ∇zl ⊢ (x⊗ g)∗(x⊗ z) = x⊗ (g∗z) (20)

and

((20)), h ∈ ∇(z) ⊢ (x⊗ g)∗(x⊗ h) = x⊗ (g∗h) (21)

Axioms (20) and (21) can be pictured like this:
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◦ x1 xn

y1 ym

y

g

z1 zl z

h

g∗z1 g∗zl g∗z

g∗h

x x⊗ y1 x⊗ ym

x⊗ yx⊗ g x⊗ z1 x⊗ zl x⊗ z

x⊗ h

x⊗ g∗z1 x⊗ g∗zl x⊗ g∗z

(x⊗ g)∗h

(x⊗ g)∗(x⊗ z1) (x⊗ g)∗(x⊗ zl) (x⊗ g)∗(x⊗ z)

(x⊗ g)∗(x⊗ h)

Diagonal - The δ Operators

The diagonal (x, in the context of x) is in the simplest case introduced by this rule:

x ∈ ∇ ⊢ δ(x) ∈ x⊗ x (22)

which is pictured like this:

◦ x x⊗ x

δx
More generally, for n ≥ 1 :

x1 ∈ ∇, ...xn ∈ ∇(xn−1) ⊢ δ(xn) ∈ xn ⊗ xn (23)

which is pictured like this:

◦ x1 xn xn ⊗ xn

δxn

The diagonal δ is subject to four axiom schemes.

Firstly, axioms for substituting the diagonal into weakenings, for n ≥ 0:

x1 ∈ ∇, ...xn ∈ ∇(xn−1), x ∈ ∇(xn), y1 ∈ ∇(x), ...ym ∈ ∇(ym−1), y ∈ ∇(ym) ⊢ δ(x) ∗ (x⊗ y) = y

(24)
and

((24)), g ∈ ∇(y)

⊢ δ(x) ∗ (x⊗ g) = g (25)

Axioms (24) and (25) can be pictured like this:

◦ x1 xn x

y1 ym y

g

δ∗x(x⊗ y1) δ∗x(x⊗ ym) δ∗x(x⊗ y)

δ∗x(x⊗ g)

x⊗ xδx x⊗ y1 x⊗ ym x⊗ y

x⊗ g
7



Secondly axioms for substituting into a diagonal:

x1 ∈ ∇, ...xn ∈ ∇(xn−1), x ∈ ∇(xn), f ∈ τ(x) ⊢ f∗δ(x) = f (26)

which is pictured like this:

◦ x1 xn

x

f

x⊗ x

δx

f∗(x⊗ x)f∗δx

and

x1 ∈ ∇, ...xn ∈ ∇(xn−1), x ∈ ∇(xn), f ∈ τ(x), y1 ∈ ∇(x), ...ym ∈ ∇(ym−1), y ∈ ∇(ym)

⊢ f∗δ(y) = δ(f∗y) (27)

Axiom 27 can be pictured like this:

◦ x1 xn

x

f

y1 ym y y ⊗ y

δy

f∗y1 f∗ym

f∗y ⊗ f∗y

δf∗y

y ⊗ y
f∗δy

This completes the definition of the generalised algebraic theory MetaGAT .

5 Relating Contextual Categories and MetaGAT algebras

5.1 Constructing a Contextual Category from a MetaGAT algebra

From a MetaGAT algebra A we can construct a corresponding contextual category whose sections
are the terms of the MetaGAT algebra. The tree of objects of the contextual category is the
tree of types of the MetaGAT algebra2. The morphisms Hom(A,B) where 1 ⊳ A1...An ⊳ A and
1 ⊳B1... ⊳ Bm ⊳B are m-tuples f1, ...fm, f of terms of A which are typed as shown in the following
diagram:

2A root to the tree is required and therefore formally appended as this is not explicit as a type in MetaGAT .
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◦

x1

xn

x

x⊗ y1

f1

x⊗ ym

x⊗ y

f∗
1 (x⊗ y2)

f2

f∗
1 (x⊗ ym)

f∗
1 (x⊗ y)

. . . x⊗ ym

fm

f∗
m−1...f

∗
2 f

∗
1 (x⊗ y)

f∗
m...f∗

2 f
∗
1 (x⊗ y)

y1

ym

y

5.2 Interpreting the Theory of Contextual Categories in MetaGat

Vladimir Voevodsky in this C-systems paper shows how the theory of contextual categories can
be expressed as a generalised algebraic theory. The construction outlined in section 5.1 can be
expressed as an interpretation of the generalised algebraic theory of contextual categories into the
MetaGAT theory enriched by existential types and the absolute. Absolute is required for the
interpretation of the terminal object of the contextual category. Existential types over terms are
required so that the morphism sort (Hom) of the contextual category can be interpreted as follows.
In the context:

x1 ∈ Ob1, ...xn ∈ Obn(xn−1), x ∈ Obn+1(xn), y1 ∈ Ob1, ...ym ∈ Obm(ym−1), y ∈ Obm+1(ym) (28)

the type Hom(x, y) is interpreted by:

∑

f1∈τ(x⊗y1)

∑

f2∈τ(f∗
1 (x⊗y2))

. . .
∑

fm∈τ(f∗
m−1(f

∗
m−2...(f

∗
1 (x⊗ym))...))

τ(f∗

m(f∗

m−1...(f
∗

1 (x⊗ y))...)) (29)

5.3 Interpreting MetaGat in the Theory of Contextual Categories

If the theory of contextual categories is enriched by identity and existential types over the Hom

types then the construction of a MetaGAT algebra from the sections of the contextual category
can expressed as an interpretation of the theory MetaGAT in the enriched theory of contextual
categories. The key to the interpretation is that terms of MetaGAT are interpreted as sections of
the contextual category and this can be expressed as a type in the enriched theory as follows. In
the context

x1 ∈ Ob1, ...xn ∈ Obn(xn−1), x ∈ Obn+1(xn)

Sections(x) is the type ∑

f∈Hom(xn,x)

Id(f ◦ p(x), idxn
)
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